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Mixed Strategies

• It would be a pretty bad idea to play any deterministic strategy
in matching pennies

58 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Definition 3.2.3 (Constant-sum game)A two-player normal-form game isconstant-
sumif there exists a constantc such that for each strategy profilea ∈ A1 × A2 it
is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will
always assume thatc = 0, that is, that we have a zero-sum game. If common-
payoff games represent situations of pure coordination, zero-sum games represent
situations of pure competition; one player’s gain must come at the expense of the
other player. This property requires that there be exactly two agents. Indeed, if
you allow more agents, any game can be turned into a zero-sum game by adding
a dummy player whose actions do not impact the payoffs to the other agents, and
whose own payoffs are chosen to make the payoffs in each outcome sum to zero.

A classical example of a zero-sum game is the game ofMatching Pennies. In thisMatching
Pennies game game, each of the two players has a penny and independently chooses to display

either heads or tails. The two players then compare their pennies. If they are the
same then player 1 pockets both, and otherwise player 2 pockets them. The payoff
matrix is shown in Figure 3.6.

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1

Figure 3.6: Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rocham-
beau, provides a three-strategy generalization of the matching-pennies game. The
payoff matrix of this zero-sum game is shown in Figure 3.7. In this game, each of
the two players can choose either rock, paper, or scissors. If both players choose
the same action, there is no winner and the utilities are zero. Otherwise, each of the
actions wins over one of the other actions and loses to the other remaining action.

Battle of the Sexes

In general, games can include elements of both coordination and competition. Pris-
oner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, aBattle of the

Sexes game husband and wife wish to go to the movies, and they can select among two movies:
“Lethal Weapon (LW)” and “Wondrous Love (WL).” They much prefer to go to-
gether rather than to separate movies, but while the wife (player 1) prefers LW, the
husband (player 2) prefers WL. The payoff matrix is shown in Figure 3.8. We will
return to this game shortly.
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Mixed Strategies

• It would be a pretty bad idea to play any deterministic strategy
in matching pennies

• Idea: confuse the opponent by playing randomly
• Define a strategy si for agent i as any probability distribution
over the actions Ai.
• pure strategy: only one action is played with positive probability
• mixed strategy: more than one action is played with positive

probability
• these actions are called the support of the mixed strategy

• Let the set of all strategies for i be Si

• Let the set of all strategy profiles be S = S1 × . . .× Sn.
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Utility under Mixed Strategies

• What is your payoff if all the players follow mixed strategy
profile s ∈ S?
• We can’t just read this number from the game matrix anymore:

we won’t always end up in the same cell

• Instead, use the idea of expected utility from decision theory:

ui(s) =
∑
a∈A

ui(a)Pr(a|s)

Pr(a|s) =
∏
j∈N

sj(aj)
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Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
.
Definition (Best response)
..
.s
∗
i ∈ BR(s−i) iff ∀si ∈ Si, ui(s

∗
i , s−i) ≥ ui(si, s−i)

.
Definition (Nash equilibrium)
..
.s = ⟨s1, . . . , sn⟩ is a Nash equilibrium iff ∀i, si ∈ BR(s−i)

.
Theorem (Nash, 1950)
..
.Every finite game has a Nash equilibrium.
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Example: Matching Pennies

58 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Definition 3.2.3 (Constant-sum game)A two-player normal-form game isconstant-
sumif there exists a constantc such that for each strategy profilea ∈ A1 × A2 it
is the case thatu1(a) + u2(a) = c.
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actions wins over one of the other actions and loses to the other remaining action.
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oner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, aBattle of the

Sexes game husband and wife wish to go to the movies, and they can select among two movies:
“Lethal Weapon (LW)” and “Wondrous Love (WL).” They much prefer to go to-
gether rather than to separate movies, but while the wife (player 1) prefers LW, the
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Example: Coordination

3.2 Games in normal form 57

Incidentally, the name “Prisoner’s Dilemma” for this famous game-theoretic sit-
uation derives from the original story accompanying the numbers. The players of
the game are two prisoners suspected of a crime rather than two network users. The
prisoners are taken to separate interrogation rooms, and each can either “confess”
to the crime or “deny” it (or, alternatively, “cooperate” or “defect”). If the payoff
are all nonpositive, their absolute values can be interpreted as the length of jail term
each of prisoner gets in each scenario.

Common-payoff games

There are some restricted classes of normal-form games that deserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 (Common-payoff game)A common-payoff gameis a game incommon-payoff
game which for all action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is

the case thatui(a) = uj(a).

Common-payoff games are also calledpure coordination gamesor team games.pure
coordination
game

team games

In such games the agents have no conflicting interests; their sole challenge is to
coordinate on an action that is maximally beneficial to all.

As an example, imagine two drivers driving towards each other in a country
having no traffic rules, and who must independently decide whether to drive on the
left or on the right. If the drivers choose the same side (left or right) they have
some high utility, and otherwise they have a low utility. The game matrix is shown
in Figure 3.5.

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Figure 3.5: Coordination game.

Zero-sum games

At the other end of the spectrum from pure coordination games liezero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine trans-
formations) are more properly calledconstant-sum games.Unlike common-payoffconstant-sum

game games, constant-sum games are meaningful primarily in the context of two-player
(though not necessarily two-strategy) games.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.
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Example: Prisoner’s Dilemma

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C (for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options are the two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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